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Abstract

For trajectory tracking of a piezoelectric actuator system, an enhanced iterative learning control (ILC) scheme based on

wavelet transform filtering (WTF) is proposed in this research. The enhanced ILC scheme incorporates a state

compensation in the ILC formula. Combining state compensation with iterative learning, the scheme enhances tracking

accuracies substantially, in comparison to the conventional D-type ILC and a proportional control-aided D-type ILC. The

wavelet transform is adopted to filter learnable tracking errors without phase shift. Based on both a time–frequency

analysis of tracking errors and a convergence bandwidth analysis of ILC, a two-level WTF is chosen for ILC in this study.

The enhanced ILC scheme using WTF was applied to track two desired trajectories, one with a single frequency and the

other with multiple frequencies, respectively. Experimental results validate the efficacy of the enhanced ILC in terms of the

speed of convergence and the level of long-term tracking errors.

r 2006 Published by Elsevier Ltd.
1. Introduction

Due to their advantages of infinite small displacement, high stiffness, and wide bandwidth, piezoelectric
actuators have been commonly used for precision positioning in various engineering fields, such as positioning
of diamond machine tools, positioning of lenses in optics, and positioning of masks in microelectronics.
A piezoelectric actuator is made of ferroelectric ceramic materials, typically lead, zirconate and titanate (PZT)
compounds. Driven by a dipole electrical field, the crystal structure of the PZT material is polarized and
deformed, which results in the excited displacement of the PZT actuator. After removal of the applied electric
field, however, a residual polarization or displacement remains within the material. Under repeated driving,
the piezoelectric actuator therefore exhibits a nonlinear relation between the input voltage and the output
displacement, which is the well-known hysteresis loop.

In recent years, various control schemes have been proposed to compensate for the nonlinear behaviors of
piezoelectric systems. Many schemes were based on inversions of certain hysteresis models, e.g. the notable
ee front matter r 2006 Published by Elsevier Ltd.
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Preisach model, in the feed-forward path [1], and/or the PID control or the like in the feedback path [2]. More
complex control methods such as H-infinity and neural sliding-mode control were also reported [3,4]. All such
endeavors have attempted to reduce tracking errors of piezoelectric systems to about 1–5% of stroke lengths.

Some other studies adopted an alternate approach—the iterative learning control (ILC). Basically, the ILC
approach utilizes the control input and tracking error information of previous iterations for the purpose of
tracking control. No model of the system is required for ILC in general [5]. Compared to other complicated
design approaches, the ILC approach takes a reduced effort of control design and implementation. In Ref. [6],
the basic P-type ILC was used for the piezoactuator tracking. Its tracking performance for a slow monotonic
trajectory was excellent, but the tracking of a sinusoidal trajectory seemed less impressive. In Ref. [7], the basic
P-type ILC was applied to track noise disturbed trajectories for a piezoelectric stage under a proportional,
integral and derivative (PID) control. It further introduced a disturbance observer to improve tracking
accuracies. In Ref. [8], a proportional control-aided ILC scheme was used for position tracking of a
piezoelectric motor. It improved tracking errors drastically, compared to a traditional proportional and
integral (PI) controller. In Ref. [9], the authors proposed a model-based ILC for tracking control of a
piezoelectric actuator. Though it reduced tracking errors significantly in contrast to a phase compensated PI
control, the ILC requires a model of the system, which is not desirable in general.

In our experiments of using traditional ILC schemes for trajectory tracking of a piezoelectric actuator
system, however, the experimental results were not as expected by the ILC theories. While tracking errors by
the traditional D-type ILC scheme were much higher than the floor noise, tracking control by a proportional
control-aided ILC scheme even resulted in divergence of the actuator displacement. Therefore, in this study we
propose an enhanced ILC scheme based on wavelet transform filtering (WTF). This enhanced ILC scheme
differs from traditional ILC significantly. It compensates for the state difference between two consecutive
iterations in order that the ILC learning can take place more precisely as desired. Furthermore, it applies the
wavelet transform to filter the learnable errors in ILC. The wavelet transform is used as a zero-phase filtering
method by decomposing the error signal, de-noising it, and then reconstructing it. Experimental results reveal
that tracking errors by the new scheme were quite close to the floor noise.

2. Experimental setup

The experiment platform includes a piezoelectric actuator system, a data acquisition card, and a personal
computer. Fig. 1 shows the piezoelectric system for tracking experiments. It includes a piezoelectric actuator
stage and a signal conditioning electronics unit. The piezoelectric actuator carries the translation stage and has
a displacement range of �8 to 40 mm corresponding to an input voltage of �30 to +150V. The PZT stack of
the actuator is pre-stressed in a casing by a compression force of 150N, and the translation stage is also loaded
by a spring. The piezoelectric actuator has a built-in strain gauge sensor with a cable connected to the signal
Fig. 1. The piezoelectric actuator system: a piezoelectric actuator stage with a built-in sensor (in the front), and a driving and sensing

electronics unit (in the rear).
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conditioning electronics unit. The unit conditions the sensor signal and outputs a sensing voltage of +0.2 to
�1V for use by an A/D converter of the data acquisition card. The electronics unit also has a voltage
amplifier. The amplifier receives a control input (�1 to +5V) from a D/A converter of the data acquisition
card and amplifies it by a gain of 30 to drive the piezoelectric actuator. The A/D and D/A converters of the
data acquisition card have 12-bit resolutions. The maximum sampling rate of the A/D converters is 100K-
samples per second, whereas the maximum sampling rate of the D/A converters is 1K-samples per second.
The personal computer executing the control algorithm has a 1-GHz CPU, and the control algorithm is
programmed in MATLAB codes under the Windows operating system.
3. Problem statement

The dynamics of the piezoelectric actuator system can be identified as a second-order model coupled with a
hysteresis [10]

m €pðtÞ þ b _pðtÞ þ kpðtÞ ¼ k½dvðtÞ � hðtÞ�,

_hðtÞ ¼ ad _vðtÞ � bj _vðtÞjhðtÞ � g_vðtÞjhðtÞj, ð1Þ

where v(t) and p(t) denote the driving voltage applied to the surfaces of the actuator, and the output
displacement of the actuator, respectively; h(t) represents a state variable for modeling the hysteretic dynamics
of the actuator; m, b, and k are the effective mass, damping coefficient, and mechanical stiffness of the
piezoelectric actuator stage, respectively; d is the effective piezoelectric coefficient related to the slope of the
output displacement versus the input voltage of the actuator; and a, b, and g are parameters that control the
shape of the hysteresis loop.

In Ref. [11], system (1) is expressed in the following state-space format for a sinusoidal actuation:

_xðtÞ ¼ F ðxðtÞÞ þ GuðtÞ,

yðtÞ ¼ HxðtÞ, ð2Þ

where u(t) and y(t) represent the control input and system output, respectively. In Eq. (2), the state of the
system is defined as

xðtÞ ¼ ½ x1ðtÞ x2ðtÞ x3ðtÞ x4ðtÞ x5ðtÞ �T

¼ ½ pðtÞ _pðtÞ hðtÞ vðtÞ _vðtÞ �T,

and the state-space vectors are given by

F ðxðtÞÞ ¼

x2ðtÞ

ð�kx1ðtÞ � bx2ðtÞ � kx3ðtÞ þ kdx4ðtÞÞ=m

ðad � gjx3ðtÞjÞx5ðtÞ � bjx5ðtÞjx3ðtÞ

x5ðtÞ

0

2
666666664

3
777777775
,

G ¼ ½0 0 0 0 1�T,

H ¼ ½1 0 0 0 0�.

Obviously, system (2) is nonlinear. If the control task is for the piezoelectric actuator to track a desired
trajectory iteratively, system (2) can be discretized and transformed as an iterative discrete-time nonlinear
system. It can be then included in the class of iterative discrete-time uncertain nonlinear time-varying systems
as follows:

xiðnþ 1Þ ¼ f ðxiðnÞ; nÞ þ BðxiðnÞ; nÞuiðnÞ þ wiðnÞ,

yiðnÞ ¼ CðxiðnÞ; nÞxiðnÞ þ xiðnÞ, ð3Þ
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where i and n denote the indexes in the iteration domain and time domain, respectively; xi, yi, and ui are the
system state, system output, and control input, respectively, in iteration i for all n 2 ½0;N� and for some
positive integer N; Cð�; �Þ is time-varying matrix; f ð�; �Þ and Bð�; �Þ are unknown functions; and wi(n) and xi(n)
are input and output disturbances, respectively.

For controlling system (3), a class of iterative learning controllers was proposed in Ref. [12]:

uiðnÞ ¼ ub
i ðnÞ þ u

f
i ðnÞ, (4)

where the feedforward controller is

u
f

i ðnÞ ¼
Xi�m

j¼i�1

GjujðnÞ þ
Xi�m

j¼i�1

LjðnÞejðnþ 1Þ, (5)

and the feedback controller is given by

ziðnþ 1Þ ¼ pðziðnÞÞ þ qðziðnÞÞeiðnÞ,

ub
i ðnÞ ¼ rðziðnÞÞ þ sðziðnÞÞeiðnÞ, ð6Þ

In Eq. (5), ejðnþ 1Þ denotes the tracking error between the desired and system outputs at time n+1 in iteration
j, and Gj and Lj represent the forgetting factor and learning gain operators, respectively. In Eq. (6), ei(n) is the
current tracking error; and the functions p, q, r, and s are chosen to satisfy some bounded conditions. Two
basic controllers of class (4) are, for example, the D-type ILC (abbr. D-ILC):

uiðnÞ ¼ u
f

i ðnÞ,

¼ ui�1ðnÞ þ Lei�1ðnþ 1Þ, ð7Þ

and a proportional control-aided D-type ILC (abbr. PD-ILC):

uiðnÞ ¼ u
f

i ðnÞ þ ub
i ðnÞ

¼ ui�1ðnÞ þ Lei�1ðnþ 1Þ þ KpeiðnÞ, ð8Þ

where L and Kp are the learning gain and proportional gain, respectively. For simplicity, the D-ILC and PD-
ILC will be two representative controllers of class (4) in Section 7 for tracking experiments.

In Ref. [12], the convergence analysis of class (4) is based on some restrictive assumptions such as the
identical initial condition and the Lipschitz conditions. However, in tracking control of a highly nonlinear
system such as the piezoelectric actuator, the assumptions might not be all satisfied and thus the controllers (7)
and (8) might not yield tracking results as expected. Therefore, we propose an enhanced ILC (abbr. EILC)
that is relieved of the identical initial condition assumption by incorporating state compensation in ILC. The
EILC has the update law

uiðnÞ ¼ ui�1ðnÞ þ Lei�1ðnþ 1Þ þ K eiðnÞ � ei�1ðnÞ½ �, (9)

where K is the compensation gain. The K ½eiðnÞ � ei�1ðnÞ� term is designed to offset the state difference between
the current and previous iterations at any time n. Since the EILC compensates for the state difference between
two consecutive iterations all the time, it does not demand that the initial condition be the same for all
iterations. Also, with this state compensation, the iterative learning by the EILC can achieve tracking control
of the piezoelectric actuator system more precisely than the D-ILC or PD-ILC, as shown by the experimental
results in Section 7. Furthermore, the Kei(n) component in Eq. (9) functions as a feedback control that can
stabilize the system, similar to the role of ub

i ðnÞ in Eq. (4).
A note about the causality of ILC is made as follows. In the ILC update laws (5), (7), (8) and (9), the error

ei�1ðnþ 1Þ in iteration i�1 is utilized to update the control ui(n) in iteration i. Since ei�1ðnþ 1Þ is the tracking
error happening before iteration i, the ILC update laws are causal.

4. Wavelet transform filtering for ILC

In the ILC formulae such as Eqs. (7)–(9), a typical learnable term is ei�1ðnþ 1Þ which is the tracking error
caused by the control input ui�1ðnÞ in the previous iteration. This error term is naturally contaminated by
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input and output disturbances in a real system, and thus will be filtered before the ILC learns it in the current
iteration. To filter the learnable error, the wavelet transform is adopted in this study. The WTF is basically an
operation to decompose a noisy signal, de-noise it, and then reconstruct it. To facilitate our approach to the
WTF, we will first introduce a two-level WFT structure and derive the transfer function of it, which can be
then generalized for any multi-level WTF, as described in the following.

Figs. 2 and 3 show the tree and non-tree structures of the analysis filter bank and the synthesis filter bank,
respectively, for two-level wavelet transform [13]. In the two figures, x(n) is the input signal and x̂ðnÞ is the
output signal, whereas d1(n), d2(n), and a2(n) are the detail coefficients at level one, the detail coefficients at
level two, and the approximation coefficients at level two, respectively. In Fig. 2, Ha0 and Ha1 are the lowpass
and highpass filters in the analysis bank, respectively, whereas in Fig. 3, Hs0 and Hs1 are the lowpass and
highpass filters in the synthesis bank, respectively. Also, the up-sampler is denoted by ‘‘mM’’ for an up-
sampling of M, and the down-sampler by ‘‘kM’’ for a down-sampling of M, where M is 2 or 4.

The two-level WTF scheme adopted in this study is to decompose x(n), nullify d1(n) and d2(n), and then
reconstruct the decomposed signal to obtain x̂ðnÞ. Therefore, the signal path of the two-level WTF is from the
input x(n), through A2, ‘‘k4’’, ‘‘m4’’, and S2, to the output x̂ðnÞ. According to this signal path, we have the
Fig. 2. Analysis filter bank: a two-level analysis filter bank of (a) tree structure and (b) equivalent non-tree structure.

Fig. 3. Synthesis filter bank: a two-level synthesis filter bank of (a) tree structure and (b) equivalent non-tree structure.
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z-domain equations

X 2ðzÞ ¼ A2ðzÞX ðzÞ, (10)

X̂ ðzÞ ¼ S2ðzÞY 2ðzÞ, (11)

where the filters A2(z) and S2(z) can be expressed as [13]

A2ðzÞ ¼ Ha0ðzÞHa0ðz
2Þ, (12)

S2ðzÞ ¼ Hs0ðzÞHs0ðz
2Þ. (13)

Inserting Eq. (12) into Eq. (10) gives

X 2ðzÞ ¼ Ha0ðzÞHa0ðz
2ÞX ðzÞ. (14)

Inserting Eq. (13) into Eq. (11) yields

X̂ ðzÞ ¼ Hs0ðzÞHs0ðz
2ÞY 2ðzÞ, (15)

Furthermore, it can be shown that the structure of ‘‘k4’’ cascaded by ‘‘m4’’ has the following relation
between the input and output of the structure [14]:

Y 2ðzÞ ¼
1

4

X3
i¼0

X 2ðe
�j2pi=4zÞ. (16)

Inserting Eq. (14) into Eq. (16) produces

Y 2ðzÞ ¼
1

4

X3
i¼0

Ha0ðe
�j2pi=4zÞHa0ððe

�j2pi=4zÞ2ÞX ðe�j2pi=4zÞ. (17)

Substituting Eq. (17) into Eq. (15) generates

X̂ ðzÞ ¼
1

4

X3
i¼0

Hs0ðzÞHs0ðz
2ÞHa0ðe

�j2pi=4zÞHa0ððe
�j2pi=4zÞ2ÞX ðe�j2pi=4zÞ. (18)

If the input X(z) is a narrowband signal such that there is no aliasing effect after the down-sampling, it can
be fully recovered after the up-sampling and lowpass filtering. This implies the product terms in Eq. (18) are
zero for all i 6¼0, and thus [14]

X̂ ðzÞ ¼ 1
4
Hs0ðzÞHs0ðz

2ÞHa0ðzÞHa0ðz
2ÞX ðzÞ. (19)

In fact, the sum of the product terms for all i 6¼0 in Eq. (18) is named as the alias term in the lowpass branch,
according to the perfect reconstruction design using the quadrature mirror filter bank. For perfect
reconstruction, this alias term will be cancelled by the other alias term in the highpass branch. On the other
hand, the product term for i ¼ 0 in Eq. (18), i.e. the product term in Eq. (19), is called the distortion term. For
the general case of a wideband input, the influence of the alias term on X̂ ðzÞ in Eq. (18) depends on the quality
of the lowpass filter Ha0(z

2). If Ha0(z
2) is an ideal brickwall filter with the cutoff frequency of p/4 radians/

sample, there will be no aliasing around the Nyquist frequency (p radians/sample) after the up-sampling by 4,
that is, the alias term will be zero. Now, the purpose of the WTF analysis in this section is to derive the transfer
function of the WTF that will be used by the convergence analysis in the next section. In convergence analysis,
we can always select a high order filter Ha0(z) such that the transition width of Ha0(z

2) is narrow enough and
thus the aliasing effect after the up-sampling can be neglected. In other words, Eq. (18) can be approximated
as Eq. (19) when Ha0(z) has a sufficiently high order. Hence we will use Eq. (19) for the following derivation.

Rearranging Eq. (19) leads to the transfer function

X̂ ðzÞ

X ðzÞ
¼

1

4
Hs0ðzÞHs0ðz

2ÞHa0ðzÞHa0ðz
2Þ, (20)
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for the two-level WTF. However, the wavelet filters (Ha0,Hs0,Ha1 and Hs1) are typically designed for perfect
reconstruction, and the perfectly reconstructed signal by the design has a pure delay:

Hs0ðzÞHa0ðzÞ ¼ z�d

or

Hs0ðz
2ÞHa0ðz

2Þ ¼ z�2d ,

where d depends on the type and order of the wavelet family. Since, in ILC it is important that the signal after
filtering has zero-phase delay, we can add a phase advance to Eq. (20) and thus obtain the following transfer
function of the two-level WTF with no phase lag:

HðzÞ ¼
~X ðzÞ

X ðzÞ

¼
1

4
zðdþ2dÞHs0ðzÞHs0ðz

2ÞHa0ðzÞHa0ðz
2Þ, ð21Þ

where ~X ðzÞ denotes the zero-phase WTF output corresponding to an input signal X(z). Finally, we can
generalize the above derivation for Eq. (21) and obtain the zero-phase transfer function of any l-level WTF as

HðzÞ ¼
~X ðzÞ

X ðzÞ

¼
1

2l
zð2

l�1Þd Hs0ðzÞHs0 z2
� �

. . .Hs0 z2
l�1

� �� �
Ha0ðzÞHa0 z2

� �
. . .Ha0 z2

l�1
� �� �

. ð22Þ

In the time domain, the zero-phase WTF relation between an input x(n) and the output ~xðnÞ is

~xðnÞ ¼ hðnÞ � xðnÞ, (23)

where h(n) is the inverse z-transform of H(z) in Eq. (22), and the notation * means convolution.
In our ILC update laws (7)–(9), the learnable error ei�1(n+1) requires filtering. Thus,

~ei�1ðnþ 1Þ ¼ hðnÞ � ei�1ðnþ 1Þ, (24)

according to (23). Based on Eqs. (7)–(9) and (24), we have the ILC implementation equations

uiðnÞ ¼ ui�1ðnÞ þ L~ei�1ðnþ 1Þ, (25)

uiðnÞ ¼ ui�1ðnÞ þ L~ei�1ðnþ 1Þ þ KpeiðnÞ, (26)

and

uiðnÞ ¼ ui�1ðnÞ þ L~ei�1ðnþ 1Þ þ K eiðnÞ � ei�1ðnÞ½ �, (27)

for the D-ILC, the PD-ILC, and the EILC, respectively. In Eq. (26), we do not filter the current error ei(n),
since such filtering will cause certain phase delay to the current error, which is not desirable. Similarly in
Eq. (27) ei(n) is not filtered, and thus neither its counterpart ei�1(n).

5. Convergence analysis of ILC

According to Eqs. (25)–(27), we can work on ILC convergence analysis in the frequency domain in order to
derive the convergence bandwidth of the D-ILC, PD-ILC, and EILC, respectively. In this paper, let F denote
the analog frequency (Hz) and f denote the digital frequency (cycle/sample). We will carry out the convergence
analysis of the EILC first, and then of the D-ILC and the PD-ILC.

By inserting Eq. (24) into Eq. (27), one obtains

uiðnÞ ¼ ui�1ðnÞ þ K eiðnÞ � ei�1ðnÞ½ � þ LhðnÞ � ei�1ðnþ 1Þ. (28)

Taking the z-transform of Eq. (28) leads to

UiðzÞ ¼ Ui�1ðzÞ þ K EiðzÞ � Ei�1ðzÞ½ � þ LHðzÞzEi�1ðzÞ. (29)
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Evaluating Eq. (29) on the unit circle z ¼ ej2pf gives rise to

Uiðf Þ ¼ Ui�1ðf Þ þ K Eiðf Þ � Ei�1ðf Þ½ � þ LHðf Þej2pf Ei�1ðf Þ. (30)

Rearranging Eq. (30) yields

Uiðf Þ ¼ Ui�1ðf Þ þ Gff ðf ÞEi�1ðf Þ þ GfbEiðf Þ, (31)

where

Gfb ¼ K , (32)

Gff ðf Þ ¼ �K þ Lej2pf Hðf Þ. (33)

By assuming that the plant is linear and has a transfer function Gp(f), the output Yi(f) in iteration i is

Y iðf Þ ¼ Gpðf ÞUiðf Þ.

Hence

Eiðf Þ ¼ Y dðf Þ � Y iðf Þ,

or

Eiðf Þ ¼ Y d ðf Þ � Gpðf ÞUiðf Þ, (34)

where Ei(f) is the error in iteration i and Yd(f ) is the desired output. Similarly, for iteration i�1,

Ei�1ðf Þ ¼ Y d ðf Þ � Gpðf ÞUi�1ðf Þ. (35)

Then, inserting Eq. (31) into Eq. (34) leads to

Eiðf Þ ¼ Y dðf Þ � Gpðf ÞUi�1ðf Þ
� �

� Gpðf Þ � Gff ðf ÞEi�1ðf Þ þ GfbEiðf Þ
� �

. (36)

Substituting Eq. (35) into Eq. (36) reduces to

Eiðf Þ ¼ Ei�1ðf Þ � Gpðf Þ � Gff ðf ÞEi�1ðf Þ þ GfbEiðf Þ
� �

, (37)

Rearranging Eq. (37) produces

Eiðf Þ

Ei�1ðf Þ
¼

1� Gff ðf ÞGpðf Þ

1þ GfbGpðf Þ
. (38)

Ideally, learning errors will delay monotonically if

1� Gff ðf ÞGpðf Þ

1þ GfbGpðf Þ

����
����o1 8f . (39)

By substituting Eqs. (32) and (33) into Eq. (39), one obtains the convergence criterion:

Aðf Þ
�� ��o1 8f , (40)

where

Aðf Þ ¼
1� �K þ Lej2pf Hðf Þ

� �
Gpðf Þ

1þ KGpðf Þ
,

i.e.

Aðf Þ ¼ 1�
Lej2pf Hðf ÞGpðf Þ

1þ KGpðf Þ
, (41)

is defined as the convergence argument for the EILC.
In many situations, however, the convergence criterion (40) may not hold for all frequencies. Instead, the

inequality may be valid only for frequencies below certain threshold. Hence, we define a convergence
bandwidth fb as the threshold frequency that satisfies

jAðf bÞj ¼ 1. (42)
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If Eq. (42) has multiple real roots, then fb is the minimal positive root; if Eq. (42) has no real root, fb is
assigned as the Nyquist frequency. It is obvious that, for error convergence, one should pick up a cutoff
frequency of filtering that is less than the convergence bandwidth, i.e.

f cof b. (43)

The convergence analysis of the D-ILC or the PD-ILC is similar, except that the convergence argument is
different from (41). It can be shown that the convergence argument is

Aðf Þ ¼ 1� Lej2pf Hðf ÞGpðf Þ (44)

for the D-ILC, and

Aðf Þ ¼
1� Lej2pf Hðf ÞGpðf Þ

1þ KGpðf Þ
(45)

for the PD-ILC, respectively.

6. Time–frequency analysis of tracking errors

The ILC convergence analysis imposes the convergence bandwidth as the upper bound of the cutoff
frequency for filtering. In implementation of ILC, we can select a cutoff frequency somewhere below the upper
bound, such that the signal part of the tracking errors is retrieved whereas the noise part is filtered out.
Distinguishing the signal part from the noise part can be accomplished by analysis of the tracking errors. To
analyze non-stationary data such as tracking errors, representative methods such as the Short-Time Fourier
Transform (STFT), Wavelet Transform (WT), and Wigner–Ville Distribution (WVD) can be applied. In
general, the WVD can characterize the time-dependent spectra of the data better than the STFT and WT [15],
but it has the drawback of cross-term interference. Nevertheless, the interference problem can be treated by
WVD variations, such as the notable smoothed pseudo-WVD [15]. Referring to the ILC study using the
time–frequency analysis as in Ref. [16], we adopt the WVD for the analysis of tracking errors. Several basic
properties of the WVD are as follows.

The WVD of a signal x(t), denoted as Wx(t,F), is the Fourier transform of the autocorrelation
xðtþ ðt=2ÞÞx�ðt� ðt=2ÞÞ:

W xðt;F Þ ¼

Z 1
�1

x tþ
t
2

� �
x� t�

t
2

� �
e�j2pFt dt, (46)

where the superscript * means conjugate. From Wx(t,F), the instantaneous frequency (IF) of x(t), denoted as
Fx(t), can be recovered as

FxðtÞ ¼

R1
�1

W xðt;F ÞF dFR1
�1

W xðt;F ÞdF
. (47)

Due to the frequency marginal property of the WVD, the energy density spectrum (EDS) of x(t), denoted as
|X(F)|2, can be obtained using

X ðF Þ
�� ��2 ¼

Z 1
�1

W xðt;F Þdt. (48)

Furthermore, the smoothed pseudo-WVD (SPWVD) of x(t), denoted as W 0
xðt; F Þ, is given by

W 0
xðt;F Þ ¼

Z 1
1

wðtÞ
Z 1
�1

vðt� t0Þx t0 þ
t
2

� �
x� t0 �

t
2

� �
dt0

� 	
e�j2pFt dt, (49)

where w( � ) and v( � ) are smoothing functions such as the Hamming windows.

7. Experiments

Two trajectories for the piezoelectric actuator were tracked using the D-ILC, the PD-ILC, and the proposed
EILC, respectively. The first desired trajectory was a single frequency profile with the frequency of 10Hz and
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Fig. 4. Desired tracking profiles: a single frequency trajectory (the solid line), and a multi-frequency trajectory (the dotted line).
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a stroke length of 32 mm, as shown by the solid line in Fig. 4. The second desired trajectory was a multi-
frequency profile with the frequency components of 10 and 20Hz, and a stroke length of 32 mm, as shown by
the dotted line in Fig. 4. Each trajectory was tracked five times per iteration. Besides the initial iteration, there
were 100 learning iterations.

In what follows, the digital frequency format is used by default for all the frequency data such as the cutoff
frequency, the convergence bandwidth, and the frequency data in the WVD figures. The digital frequency f

(cycles/sample) is the analog frequency F (Hz) normalized by the sampling rate (samples/sec). In other words,
the analog frequency is equal to the digital frequency times the sampling rate. The nominal sampling rate in
the experiments of this study is 500 samples/s. Therefore, F ¼ 500 f. The Nyquist frequency which is 0.5 cycles/
sample as expressed in the digital frequency format is thus 250Hz in this experimental setup when expressed in
the analog frequency format.

7.1. Iterative learning controller design

7.1.1. Learning gain, compensation gain, and proportional gain of ILC

To simply the experiments, we assigned the same value to all the gains: L, K, and Kp. First, the nominal gain
g of the piezoelectric actuator system was calculated. It took the value of �1/5 by calculating the conversion
from the system input of +5V maximum to the system output of �1V maximum. Then, all the L, K, and Kp

gains were given the value of g�1, i.e. �5, for use in the experiments.

7.1.2. Convergence bandwidth of ILC

According to Eqs. (41) and (42), the convergence bandwidth fb of the EILC can be obtained. Fig. 5a shows
the magnitude response of the EILC convergence argument, i.e. |A(f)| versus f, and Fig. 5b shows a
corresponding zoom-in plot of the area around |A(fb)| ¼ 1. Fig. 5 was obtained for two-level WTF using
Daubechies order-10 (abbr. db10) wavelet filters. In Fig. 5, the solid curve corresponds to a system transfer
function of Gpðf Þ ¼ g ¼ �1=5, while the dashed curve corresponds to

Gpðf Þ ¼ Ĝpðf Þ ¼
�0:0823e�j2pf � 0:0068e�j4pf þ 0:0564e�j6pf

1� 0:873e�j2pf
,

where Ĝpðf Þ was an estimated system transfer function by using a system identification technique. In fact, the
EILC convergence bandwidth fb equals 0.2334 for Gpðf Þ ¼ g, and 0.2354 for Gpðf Þ ¼ Ĝpðf Þ. The implies that,
for two-level WTF using db10 filters, the EILC convergence bandwidth is about 0.23, though the exact
transfer function of the system is usually not available. Fig. 6a shows the plot of the EILC convergence
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bandwidth versus the order of Daubechies wavelet filters, for two-level WTF. Fig. 6b is the corresponding plot
for three-level WTF. One can observe from Fig. 6 that, by using a high-order wavelet family such as the db30,
fb is about 0.2 and 0.1 for two-level and three-level WTF, respectively. In short, the EILC convergence
bandwidth is about 0.2 for two-level WTF, and about 0.1 for three-level WTF.

Similarly, by using (44) and (42), one obtains the D-ILC convergence bandwidth that is also about 0.2 and
0.1 for two-level and three-level WTF, respectively. Next, by using (45) and (42), one gets the PD-ILC
convergence bandwidth and it is about 0.2 for two-level or three-level WTF.

In summary, the convergence bandwidth of the piezoelectric actuator system is

f b � 0:2 (50)
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for two-level WTF, and

f b � 0:1 min (51)

for three-level WTF, respectively, using either the EILC, D-ILC or PD-ILC.
Finally, we have the following remark on the determination of convergence bandwidth described above. We

notice that the convergence bandwidth in this design is not sensitive to different linear estimates of Gp(f).
Therefore, we can reasonably suppose that the exact convergence bandwidth of the real piezoelectric actuator
is close to what is assumed by (50) and (51). Further, even though the real convergence bandwidth of the
system may deviate from (50) and (51) by certain amount, we can tolerate this deviation if the cutoff frequency
of the WTF has a substantial margin below the assumed convergence bandwidth (50) and (51).

7.1.3. Cutoff frequency of WTF

The cutoff frequency of the WTF is

f c ¼ 1


2lþ1 (52)

for an l-level WTF structure. Hence, by (52) and (50),

f c ¼ 1=8of b � 0:2

for two-level WTF, which meets the convergence condition (43). Similarly, by (52) and (51),

f c ¼ 1=16of b � 0:1 min

for three-level WTF, which also satisfies (43). It is noted that, in either case, there is a substantial margin
between the cutoff frequency and the assumed convergence bandwidth.

In order to choose what level of WTF to use, one can analyze the frequency content of tracking errors. By
applying Eqs. (46)–(49) to tracking errors of the piezoelectric system, the frequency characteristics of the
errors can be obtained. Fig. 7 shows a set of measured error data, its SPWVD time–frequency content, and the
estimations of its EDS and IF, for the piezoelectric system under a PI control as in Ref. [9]. Fig. 8 shows
another set of measured error data, its SPWVD time–frequency content, and the estimations of its EDS and
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IF, for the piezoelectric system in a learning iteration as in Ref. [9]. One can observe from Figs. 7 and 8, in
particular the SPWVD and EDS plots, that the error data has two major frequency bands: one lower-
frequency band below a frequency of about 0.1, and the other higher-frequency band above a frequency of
roughly 0.15. It can be reasonably assumed that the lower-band spectra were correlated to the input signal,
while the higher-band spectra were caused by the system disturbances.

Therefore, due to the WVD analysis, one should select the two-level WTF. With a cutoff frequency of 1/8,
the two-level WTF can retrieve the lower-band signals of tracking errors and filter out the higher-band
disturbances.
7.2. Experimental results

Fig. 9 shows typical root-mean-square (rms) tracking errors of the piezoelectric actuator system using the
EILC to track the single frequency trajectory for 100 learning iterations. As shown in the figure, the learning
transition takes about 3–5 iterations and the steady-state rms tracking errors are about 0.25% of the actuator
stroke length. Fig. 10 shows the contrasts of using the D-ILC and the PD-ILC, respectively. It is observed
from Fig. 10 that the PD-ILC leads to a divergent actuation, whereas the steady-state rms tracking errors
using the D-ILC fluctuate around a mean value of about 0.5% of the stroke length.

Fig. 11 shows an example of tracking errors using the EILC to track the multi-frequency trajectory for 100
learning iterations. Similar to the case of using the EILC to track the single frequency trajectory, tracking
errors converge in several iterations and the steady-state rms errors are close to 0.25% of the stroke length.
Fig. 12, in contrast, is an example of using the D-ILC and the PD-ILC, respectively, to track the multi-
frequency trajectory. As shown in Fig. 12, the output trajectory diverges when the PD-ILC is applied, whereas
the steady-state rms errors using the D-ILC vary considerably around a mean of 0.55% stroke.

By comparing Fig. 9 with Figs. 10 and 11 with Fig. 12, it is obvious that the EILC outperforms both the
D-ILC and PD-ILC substantially. Furthermore, as shown in Figs. 9 and 11, the steady-state tracking errors by
the EILC are close to the system floor noise which is about 0.2% by considering the strain gauge accuracy and
the ADC and DAC accuracies. Therefore, the EILC based on WTF is effective in tracking control of the
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Fig. 10. Tracking errors: rms tracking errors vs. iteration index for 100 learning iterations to track the single frequency trajectory using the

D-ILC (the sold line) and the PD-ILC (the dashed line), respectively.
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Fig. 9. Tracking errors: rms tracking errors vs. iteration index, for 100 iterations using the EILC to track the single frequency trajectory.
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piezoelectric actuator system in terms of the duration of learning transition and the level of steady-state
tracking errors. Moreover, the EILC maintained similar performance in experiments even though the L and K

gains were varied by 72 from the nominal value of �5. This implies that the proposed controller is quite
robust.

8. Conclusion

In comparison to the conventional D-ILC and PD-ILC, an EILC scheme is proposed in this study for
trajectory tracking of a piezoelectric actuator system. The EILC is an enhancement of traditional ILC by
including the state compensation and adopting the WTF for ILC. The state compensation not only relieves the
EILC of the constraint that the initial state must be identical for all iterations, but also enhances tracking
accuracies compared to the D-ILC and PD-ILC. The wavelet transform is used as a unique method to filter
tracking errors without phase lag, so that lower-frequency signals are retrieved for iterative learning while



ARTICLE IN PRESS

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
0 10 20 30 40 50 60 70 80 90 100

800

720

640

560

480

400

320

240

160

80

0

Iteration index

R
M

S
 tr

ac
ki

ng
 e

rr
or

 (
%

 s
tr

ok
e)

R
M

S
 tr

ac
ki

ng
 e

rr
or

 (
na

no
m

et
er

)

Fig. 11. Tracking errors: rms tracking errors vs. iteration index, for 100 learning iterations using the EILC to track the multi- frequency

trajectory.
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Fig. 12. Tracking errors: rms tracking errors vs. iteration index for 100 learning iterations to track the multi-frequency trajectory using the

D-ILC (the sold line) and the PD-ILC (the dashed line), respectively.
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higher-frequency noises are attenuated. The differentiation of signals from noises in tracking errors is achieved
by using the WVD to analyze the error data. The WVD reveals useful frequency characteristics of the error
data, such as the time frequency distribution and the energy density spectrum of the data. Moreover, the
convergence analysis of ILC provides the information of the convergence bandwidth. Based on the ILC
convergence bandwidth and the time frequency characteristics of the tracking errors, the two-level WTF is
selected in this study. The experimental results show that the EILC using WTF not only achieves fast
convergence of tracking errors in several iterations but also keeps small steady-state errors that are close to the
system noise level.

Acknowledgments

This work was supported by the National Science Council, Taiwan, Republic of China, under Grants
NSC93-2218-E-211-002 and NSC93-2212-E-211-007.



ARTICLE IN PRESS
C.-J. Chien et al. / Journal of Sound and Vibration 299 (2007) 605–620620
References

[1] P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator, IEEE Transactions on Control Systems Technology 4 (1996) 209–216.

[2] J. Tzen, S. Jeng, W. Chieng, Modeling of piezoelectric actuator for compensation and controller design, Precision Engineering 27

(2003) 70–86.

[3] S. Salapaka, A. Sebastian, J.P. Cleveland, M.V. Salapaka, Design, identification and control of a fast nanopositioning device, in:

Proceedings of the 2002 American Control Conference, vol. 3, Anchorage, AK, 2002, pp. 1966–1971.

[4] C.L. Hwang, C. Jan, A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant

hysteresis, IEEE Transactions on Neural Networks 14 (1) (2003) 66–78.

[5] Z. Bien, J.X. Xu, Iterative Learning Control: Analysis, Design Integration and Application, Kluwer Academic Publishers, Boston, MA,

1998.

[6] K. Leang, S. Devasia, Iterative feedforward compensation of hysteresis in piezo positioners, in: Proceedings of the 2003 IEEE

Conference on Decision and Control, vol. 3, Maui, Hawaii, 2003, pp. 2626–2631.

[7] Y.C. Huang, C.H. Cheng, Robust tracking control of a novel piezodriven monolithic flexure-hinge stage, in: Proceedings of the 2004

IEEE Conference on Control Applications, Taipei, Taiwan, 2004, pp. 977–982.

[8] J.X. Xu, J. Xu, T. Lee, Iterative learning control for a linear piezoelectric motor with a nonlinear unknown input deadzone, in:

Proceedings of the 2004 IEEE Conference on Control Applications, Taipei, Taiwan, 2004, pp. 1001–1006.

[9] F.S. Lee, C.J. Chien, J.C. Wang, J.J. Liu, Application of a model based iterative learning technique to tracking control of a

piezoelectric system, Asian Journal of Control 7 (1) (2005) 29–37.

[10] B.M. Chen, T.H. Lee, C. Hang, Y. Guo, S. Weerasooriya, An HN almost disturbance decoupling robust controller design for a

piezoelectric bimorph actuator with hysteresis, IEEE Transactions on Control Systems Technology 7 (2) (1999) 160–174.

[11] C.L. Hwang, Y.M. Chen, C. Jan, Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based

variable structure control, IEEE Transactions on Control Systems Technology 13 (1) (2005) 56–66.

[12] C.J. Chien, A discrete iterative learning control for a class of nonlinear time-varying systems, IEEE Transactions on Automatic

Control 43 (5) (1998) 748–752.

[13] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[14] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time– Frequency Transforms and Applications, Wiley, New York, NY, 1999.

[15] S. Qian, D. Chen, Joint time– frequency analysis: methods and applications, PTR Prentice-Hall, Upper Saddle River, NJ, 1996.

[16] Y. Chen and K. Moore, Frequency domain adaptive learning feedforward control, in: Proceedings of the 2001 IEEE International

Symposium on Computational Intelligence in Robotics and Automation, Banff, Alberta, Canada, 2001, pp. 396–401.


	Enhanced iterative learning control for a piezoelectric �actuator system using wavelet transform filtering
	Introduction
	Experimental setup
	Problem statement
	Wavelet transform filtering for ILC
	Convergence analysis of ILC
	Time-frequency analysis of tracking errors
	Experiments
	Iterative learning controller design
	Learning gain, compensation gain, and proportional gain of ILC
	Convergence bandwidth of ILC
	Cutoff frequency of WTF

	Experimental results

	Conclusion
	Acknowledgments
	References


